Physics at Northeastern invites you to join an exciting journey to explore, discover, and apply the fundamental principles that run the universe. Take a front-row seat as you visualize everything from the collisions of sub-atomic particles to the dance of the galaxies.

Explore Our Options for Undergraduate Students


150 Years of Science in a Cosmic Web of Paper Trails
The One Network to Rule them All
This Exotic Crystal is Fueling the Quantum Revolution

Everything (In Theory)

Why can’t light escape a black hole? What exactly is dark matter? Why is the gravitational force so weak? In physics, we know everything is bound by the same rules and happens for a reason. It’s the “why” of every action and reaction that keeps us curious.

The College of Science physics program equips you with what we know about our universe — theories on matter, the forces, space, and time — so you can reach into the unknown and answer the question… why?

Degree Options

Watch Our Video to Learn More About the COS Physics Program

Watch Our Video to Learn More About the COS Physics Program

Coursework and Requirements
A sampling of the types of courses you could take here.
Biological Physics
PHYS 4621

Offers an introduction to biophysics focusing on development and implementation of physical models for various biophysical processes that occur in living organisms and in living cells.

Modern Physics
PHYS 2303

Reviews experiments demonstrating the atomic nature of matter, the properties of the electron, the nuclear atom, the wave-particle duality, spin, and the properties of elementary particles, and introduces the special theory of relativity.

Advanced Physics
PHYS 3600

Introduces research through experiments that go beyond the simple demonstration of basic physical principles found in introductory physics courses. Experiments focus on lasers, fiber-optic communication, spectroscopy, Faraday rotation, speed of light, semiconductor physics, Hall effect, fuel cells, and Fourier analysis of music and sound.

From Theory to Practice

Northeastern Physics students value their experiences in a variety of work settings ranging from research and technical positions in corporations to research assistantships in cutting edge labs on campus or abroad. Our signature co-op experience provides a great opportunity to strengthen technical and professional skills.

Jameson O’Reilly, S’19

Physics and Math combined major Jameson O’Reilly had the opportunity of a lifetime with two of his classmates to spend his co-op at the European Organization for Nuclear Research in Geneva, Switzerland, more commonly known as CERN. While there, O’Reilly had the chance to work hands-on building and testing prototype miniature cathode strip chambers, miniCSCs. His work helped to design prototypes that would use gas mixtures that are less likely to contribute to greenhouse gases, like the current chambers do. Even after his co-op ended, O’Reilly was able to continue working for CERN on an extension of his project remotely, through an undergraduate research grant

Faculty Research

Theoretical Soft Matter and Biophysics Group
This reearch group is interested in understanding collective and emergent behavior in out-of-equilibrium and disordered systems. The research employs methods in theoretical and computation condensed matter physics and applies to a wide range of biological and non-biological systems.
Sage Lab
Professor Sage’s research is motivated by a fascination with the physical basis for the function of proteins. He develops and applies novel spectroscopic approaches to understand the structure, dynamics, and function of biological macromolecules.
Spring Lab
Professor Spring’s group bridges biophysics, biomedical optics and cancer biology to selectively target micrometastases left behind by standard therapies that limit our ability to cure many cancers.
Neurogeometry Lab
Research in this lab is aimed at understanding the basic brain functions and principles of synaptic connectivity in the cerebral cortex through the quantitative analysis of neuron morphology.
Venkatachalam Lab
Studies of the neurophysiology of C. elegans from its birth to adulthood, which reveals the detailed relationship between the developing nervous system and the animal behavior. Advanced neurotechnology and microscopy techniques are used to measure large populations of neurons in freely behaving a..
Whitford Research Group
Professor Whitford’s research probes the energetic properties of biomolecular dynamics through a combination of theoretical modeling and high-performance computing (HPC). His investigations of biomolecular order-disorder transitions and energy transduction processes span from protein and ribo..
Wanunu Lab
Professor Wanunu’s research involves studying biosystems at the nanoscale (macromolecular and sub-molecular levels).
Williams Laboratory for Single Molecule Biophysics
The Williams Laboratory for Single Molecule Biophysics specializes in the development of single molecule methods for quantitatively probing the biophysical properties of DNA and RNA and for understanding the biophysics of their interactions with proteins and other DNA binding ligands.
MoBS Lab
Alessandro Vespignani’s research activity is focused on the study of “techno-social” systems, where infrastructures composed of different technological layers are interoperating within the social components that drives their use and development.
Kar Lab
Professor Kar’s interests lie in the investigation of electronic, optical, and electrochemical properties of graphene and development of graphene-based applications, including energy generation and storage.
DK Lab
DK Lab research focuses on the theory and fundamentals of complex networks. Research topics of particular interest to the lab are latent network geometry, maximum-entropy random graph ensembles and random geometric graphs, causal sets, navigation in networks, and fundamentals of network dynamics.
Menon Lab
Professor Menon is the Principal Investigator of the Advanced Nanomaterials Research laboratory at Northeastern University where she conducts and supervises research in the area of nanomaterials, specifically porous alumina, titania nanotubes, gallium nitride nanowires, etc. She is particularly..
Emergent Epidemics Lab
Research in the Emergent Epidemics Lab spans a broad range of topics in complex systems and network science, with an emphasis on infectious disease dynamics and forecasting/predictive models.
Spintronics & Nanomagnetics Group
Professor Heiman’s research group focuses on several challenging and technologically important areas: (1) topological materials; (2) nanomagnetism; and (3) novel spintronic materials.
Israeloff Lab
Professor Israeloff’s approach in the understanding of disordered systems, critical phenomena, and non-linear dynamics is to probe model complex materials with novel mesoscopic techniques, with an emphasis on noise measurements and analyses.
Batishchev Lab
Prof. Batishchev’s main research areas are Plasma Physics applications in fusion energy, laser-matter interaction, space, electric propulsion, and industry, and Computational Physics with focus on high-performance computing.
Center for Interdisciplinary Research on Complex Systems (CIRCS)
Research at CIRCS falls within the areas of biomolecular systems, cardiac systems, neural systems, and nanosystems. Research projects are continuously evolving as members develop new collaborations both within and outside the center.
Champion Lab
The Champion lab studies the structure and dynamics of biomolecules using a variety of ultrafast laser-based techniques.
Kravchenko Lab
Professor Kravchenko is studying low temperature (millikelvin) properties of low-dimensional electron systems by means of transport, capacitance, thermopower, and magnetization measurements.
Sridhar Lab
Professor Sridhar has published more than 200 articles on his work in nanomedicine, neurotechnology, nanophotonics, metamaterials, quantum chaos, superconductivity and collective excitations in materials.
Electronic Structure and Spectroscopy of Novel Materials
His group is developing and implementing theoretical methodologies for carrying out first-principles calculations of spectral intensities relevant for angle-resolved photoemission, resonant inelastic x-ray scattering, scanning tunneling microscopy, and positron-annihilation angular correlation.
Network Science Institute
The NSI works to discover and inspire fundamentally new ways to measure, model, predict and visualize meaningful interactions and interconnectivity of social, physical and technological systems. Faculty include: Alessandro Vespignani, Albert-Laszlo Barabasi, Dima Krioukov, Samuel Scarpino.
Center for Complex Network Research (CCNR)
The Center’s objective is simple: think networks. Research focuses on how networks emerge/evolve, how they look, and how they impact our understanding of complex systems. CCNR’s research has developed to unexpected areas, including the topology of the World Wide Web; complex networks inside th..
Center for STEM Education
This university-wide center aspires to play a key role in shaping and implementing the K-20 STEM (Science, Technology, Engineering, and Mathematics) Education strategy at Northeastern University, and to impact STEM teaching and learning at all levels, both locally and nationally.
Nanomedicine Innovation Center
The mission of the Nanomedicine Innovation Center is to generate cutting-edge research in Nanomedicine, develop innovative education and training, and place an emphasis on diversity and broadening participation. It is home to state-of-the art facilities and resources and has established partnership..
Quantum Matter and Correlated Electron Theory Lab
The Fiete lab has broad interests in condensed matter physics that range from confined electrons at the nanoscale to frustrated magnetism in macroscopic samples. Their research focuses primarily on interaction effects in quantum many-body systems. The theoretical methods they use range from numeric..
Theoretical Particle Physics Group
Members of our group work in particle physics, cosmology, and string theory, often with overlap between the subjects.
Compact Muon Solenoid at LHC
We study precision measurements of Standard Model processes and are searching for signatures of new physics, including leptoquarks, dark matter candidates in topologies with Z bosons and invisible decays, and exotic production and decays of Higgs bosons.
Di Pierro Lab
The Di Pierro Lab is focused primarily on physical genetics. We are broadly interested in the physical processes involved in the translation of genetic information. We develop novel theoretical approaches to characterize the structure and function of the genome using the tools of statistical physic..
Stevenson Group
The Stevenson group is an experimental research group working at the interface of physics, chemistry, and materials science. Our research focuses on the twin problems of developing new tools for understanding biophysical dynamics and building new hardware for quantum communication.
The Minds Behind COS Physics
Faculty Spotlight
Arun Bansil
Bansil and a team of researchers have discovered new properties in the chemical element bismuth that conduct electricity efficiently, and could prevent supercomputers from frying. Bansil, who found these properties of bismuth concealed within the quantum world, says the discovery will rock modern technology harder than the internet revolution in the 1960s.
Toyoko Orimoto
``The Standard Model only describes a small fraction of the universe we know,``
says Orimoto. Her work within CERN's particle collider has given her the chance to study particles such as the Higgs Boson.
Alessandro Vespignani
Vespignani is the Director of the Modeling of Biological and Socio-technical Systems Lab (MoBS Lab) at Northeastern University. Prediction is an integral component of the work Vespignani and his colleagues perform at MoBs, where the team develops innovative mathematical models and computational tools to better understand, anticipate, and control large-scale complex network systems. In 2016, Vespignani was awarded the Aspen Institute Italia Award for his work predicting the spread of the Ebola virus in Liberia in 2014.


Diseases spread differently, region by region. This Mathematical model shows how.

Your Career Starts Here. Apply Now.