Faculty Labs

All Categories
186 Labs Found
Center for Pharmaceutical Biotechnology and Nanomedicine
Research at this center includes pharmaceutical nanocarriers, controlled drug and gene delivery, drug targeting, intracellular targeting, experimental medical imaging, and cancer immunology, and train young researches in these areas.
Center for STEM Education
This university-wide center aspires to play a key role in shaping and implementing the K-20 STEM (Science, Technology, Engineering, and Mathematics) Education strategy at Northeastern University, and to impact STEM teaching and learning at all levels, both locally and nationally.
Center for Translational NeuroImaging
The Center for Translational NeuroImaging (CTNI) brings to the Northeastern campus state-of-the-art technology and expertise in the area of Magnetic Resonance Imaging (MRI) with the purpose of understanding the central nervous system in health and disease. High-field MRI offers the potential to vis..
CESAR Lab
The CESAR lab works on the computational modeling of human behavior, both as a basic research method in the study of human behavior as well as the use of these computational models in a range of education and analysis applications.
Champion Lab
The Champion lab studies the structure and dynamics of biomolecules using a variety of ultrafast laser-based techniques.
Institute for Chemical Imaging of Living Systems
The Institute develops imaging tools to highlight chemical processes - enabling clinicians to better diagnose and treat disease.
Center for Interdisciplinary Research on Complex Systems (CIRCS)
Research at CIRCS falls within the areas of biomolecular systems, cardiac systems, neural systems, and nanosystems. Research projects are continuously evolving as members develop new collaborations both within and outside the center.
Coastal Sustainability Institute at the Marine Science Center
The MSC's research topics relate to understanding how the projected impacts of climate change will affect marine habitants, and how urban communities along the coast can best prepare for these impacts.
Combinatorics and Discrete Math
Perhaps the fastest growing area of modern mathematics, Combinatorics and Discrete Math has a wealth of real-world applications, especially in computer science, which have greatly contributed to its rapid growth.
Compact Muon Solenoid at LHC
We study precision measurements of Standard Model processes and are searching for signatures of new physics, including leptoquarks, dark matter candidates in topologies with Z bosons and invisible decays, and exotic production and decays of Higgs bosons.
Computational Vision Lab
The Computational Vision Laboratory conducts psychophysical and computational modeling studies of many aspects of visual perception.
Copos Lab
The Copos Lab is broadly interested in mathematical biology of the cell. They are a group of interdisciplinary scientists that develop models and new mathematical tools to tease apart the "internal machinery" of a living cell. Their work combines mechanics-based mathematical modeling, numerical and..

News

,

Living tissues may form like avalanches, Northeastern researchers say — a discovery that could aid new treatments

An avalanche is caused by a chain reaction of events. A loud noise or a change in terrain can have a cascading and devastating impact.

A similar process may happen when living tissues are subject to being pushed or pulled, according to new research published by Northeastern University doctoral student Anh Nguyen and supervised by Northeastern physics professor Max Bi.

As theoretical physicists, Bi and Nguyen use computational modeling and mathematics to understand the mechanical processes that organisms undergo on a cellular level. With this more recent work, they have observed that when subjected to sufficient stress, tissues can “suddenly and dramatically rearrange themselves,” similar to how avalanches are formed in the wild.

This observation challenges the notion that mechanical responses in tissues are entirely localized, suggesting instead that stress redistribution can lead to coordinated rearrangements across larger regions, explains Bi.

“What Anh has found in these computational simulations is that these [cells] are actually talking mechanically, meaning that if rearrangement happens with four cells, the energy that gets released from these four cells is enough to trigger other cells to undergo rearrangement.”

Read more from Northeastern Global News.

Photo by Alyssa Stone/Northeastern University

April 24, 2025
, , , , , , ,

Elliot Grainge, a successful entrepreneur, record executive and Northeastern graduate, is the 2025 undergraduate commencement speaker

Elliot Grainge, the CEO of Atlantic Music Group and a Northeastern graduate, will be the speaker at the university’s 2025 undergraduate commencement.

The ceremony will take place at 4 p.m. on Sunday, May 11, at Fenway Park in Boston.

Atlantic played a pivotal role in the careers of such acclaimed artists as Aretha Franklin, Ray Charles and Led Zeppelin, and more recently Ed Sheeran, Bruno Mars and Charli xcx.

After establishing his powerhouse indie label 10K Projects, Grainge was tapped, at just 30 years old, to lead Atlantic Music Group’s next chapter.

“Returning to Northeastern to speak at commencement is really meaningful to me,” Grainge said. “This university and my experience in Boston in general helped shape not only the way I think about business and creativity but helped me build a foundation as an independent thinker and entrepreneur.”

“I’m so excited to share my experience with the Class of 2025 and encourage them to trust their own vision as they move on to the next chapter of their lives.”

Read more from Northeastern Global News.

Photo by Logan Mock

April 24, 2025
,

Northeastern scientists help detect axion quasiparticles, offering new clues to dark matter

Northeastern University scientists and international collaborators have successfully created laboratory conditions that allowed them to observe axion quasiparticles for the first time, bringing researchers closer to understanding dark matter.

The research published this week in Nature represents a significant step in bridging the gap between theoretical physics and experimental proof, which can lead to both a better understanding of the universe and applications in future technology of magnetic memory.

The research — an effort that included more than a dozen organizations across five countries — included three Northeastern physicists: Arun Bansil, a university distinguished professor and director of the Quantum Materials and Sensing Institute; Kin Chung Fong, an associate professor of physics and electrical and computer engineering; and Barun Ghosh, a postdoctoral student.

“This study provides another exciting example of the very rich tapestry of quasiparticles that are harbored by quantum matter,” Bansil says. “It is clear that quantum materials will continue to offer us surprises long into the future to open new pathways for addressing pressing fundamental science questions as well as materials platforms for developing transformational new technologies.”

Read more from Northeastern Global News.

Photo by Matt Modoono/Northeastern University

April 17, 2025
,

Breakthrough ALS research: Free tool from Northeastern scientists could revolutionize drug development

Interested in finding a better way to develop drugs to treat amyotrophic lateral sclerosis (ALS), Northeastern researcher Jeffrey Agar and a team of scientists came up with a technique that improves the drug discovery workflow for an entire class of pharmaceuticals.

“This could now become the gold standard for how covalent drugs are developed from now on,” says Agar, an associate professor of chemistry and pharmaceutical sciences.

The goal is to make the technique free and available to labs small and large, part of what Agar refers to as the “democratization of science.”

“We decided not to patent this,” he says. “Just take it, use it and make drugs safer.”

Read more from Northeastern Global News.

Photo by Matthew Modoono/Northeastern University

April 16, 2025

Your Tomorrow Starts Here. Learn More Today.