Faculty Labs

All Categories
186 Labs Found
Psychology of Misinformation Lab
Led by Briony Swire-Thompson, the Psychology of Misinformation Lab studies why people believe in misinformation, why people share misinformation online, and how corrections can be designed to foster belief change.
Quantum Matter and Correlated Electron Theory Lab
The Fiete lab has broad interests in condensed matter physics that range from confined electrons at the nanoscale to frustrated magnetism in macroscopic samples. Their research focuses primarily on interaction effects in quantum many-body systems. The theoretical methods they use range from numeric..
Reid Lab
Led by Dr. Brie Reid, PhD, we study how climate stress, environmental stressors, water insecurity, metal exposures, climate-change induced food insecurity can impact human development through prenatal/postnatal stress physiology and nutrient mechanisms.
Respiratory Innovation and Simulation Team
This lab combines state-of-the-art experimental and numerical methods to quantify the health impacts of inhaled toxins (e.g. e-cigs) or to optimize inhaled therapeutics.
Ries Lab
The program investigates a wide range of subjects in the marine and geological sciences, including global climate change, ocean acidification, paleoceanography, paleobiology, carbonate sedimentology, isotope geochemistry, biomineralization, and carbon sequestration.
Ruberti Lab
Jeffrey Ruberti's research focuses on tissue engineering of load-bearing matrix (bone, cornea), bioreactor design, multi-scale mechanobiochemistry, statistical mechanics, energetics microscopy, high-resolution imaging, and biopolymer self-assembly.
Saavedra Lab of Host-Microbe Interactions
The Saavedra lab investigates host-microbe interactions in health and disease through an immunology and cell biology lens.
Sage Lab
Professor Sage’s research is motivated by a fascination with the physical basis for the function of proteins. He develops and applies novel spectroscopic approaches to understand the structure, dynamics, and function of biological macromolecules.
Sayre Photocatalysis Research Group
Photocatalysis captures the energy of light to power chemical transformations. The Sayre Photocatalysis Research Group designs low-energy photocatalysts and investigates the mechanisms of light-activated chemistry. Applications of photocatalysis include solar fuels, pharmaceutical synthesis, plant-..
Biochemistry
Shefelbine Lab
The Shefelbine Lab studies multiscale mechanics and musculoskeletal mechanobiology.
Sherbo Lab
The Sherbo Lab is focused on converting abundant and waste gases like CO2 and N2 into foods, fertilizers and fuels. The lab uses two main strategies to accomplish this goal. The first is electrocatalysis, a method of performing chemical reactions like gas reduction using clean electricity. The seco..
Sive Lab
The Sive Lab, led by Hazel Sive, studies the development of the vertebrate embryo. The group has made unique contributions to the fundamental questions of how the face forms and how the brain develops its normal structure. Research in the Sive lab emphasizes neurodevelopmental and craniofacial di..

News

,

Living tissues may form like avalanches, Northeastern researchers say — a discovery that could aid new treatments

An avalanche is caused by a chain reaction of events. A loud noise or a change in terrain can have a cascading and devastating impact.

A similar process may happen when living tissues are subject to being pushed or pulled, according to new research published by Northeastern University doctoral student Anh Nguyen and supervised by Northeastern physics professor Max Bi.

As theoretical physicists, Bi and Nguyen use computational modeling and mathematics to understand the mechanical processes that organisms undergo on a cellular level. With this more recent work, they have observed that when subjected to sufficient stress, tissues can “suddenly and dramatically rearrange themselves,” similar to how avalanches are formed in the wild.

This observation challenges the notion that mechanical responses in tissues are entirely localized, suggesting instead that stress redistribution can lead to coordinated rearrangements across larger regions, explains Bi.

“What Anh has found in these computational simulations is that these [cells] are actually talking mechanically, meaning that if rearrangement happens with four cells, the energy that gets released from these four cells is enough to trigger other cells to undergo rearrangement.”

Read more from Northeastern Global News.

Photo by Alyssa Stone/Northeastern University

April 24, 2025
, , , , , , ,

Elliot Grainge, a successful entrepreneur, record executive and Northeastern graduate, is the 2025 undergraduate commencement speaker

Elliot Grainge, the CEO of Atlantic Music Group and a Northeastern graduate, will be the speaker at the university’s 2025 undergraduate commencement.

The ceremony will take place at 4 p.m. on Sunday, May 11, at Fenway Park in Boston.

Atlantic played a pivotal role in the careers of such acclaimed artists as Aretha Franklin, Ray Charles and Led Zeppelin, and more recently Ed Sheeran, Bruno Mars and Charli xcx.

After establishing his powerhouse indie label 10K Projects, Grainge was tapped, at just 30 years old, to lead Atlantic Music Group’s next chapter.

“Returning to Northeastern to speak at commencement is really meaningful to me,” Grainge said. “This university and my experience in Boston in general helped shape not only the way I think about business and creativity but helped me build a foundation as an independent thinker and entrepreneur.”

“I’m so excited to share my experience with the Class of 2025 and encourage them to trust their own vision as they move on to the next chapter of their lives.”

Read more from Northeastern Global News.

Photo by Logan Mock

April 24, 2025
,

Northeastern scientists help detect axion quasiparticles, offering new clues to dark matter

Northeastern University scientists and international collaborators have successfully created laboratory conditions that allowed them to observe axion quasiparticles for the first time, bringing researchers closer to understanding dark matter.

The research published this week in Nature represents a significant step in bridging the gap between theoretical physics and experimental proof, which can lead to both a better understanding of the universe and applications in future technology of magnetic memory.

The research — an effort that included more than a dozen organizations across five countries — included three Northeastern physicists: Arun Bansil, a university distinguished professor and director of the Quantum Materials and Sensing Institute; Kin Chung Fong, an associate professor of physics and electrical and computer engineering; and Barun Ghosh, a postdoctoral student.

“This study provides another exciting example of the very rich tapestry of quasiparticles that are harbored by quantum matter,” Bansil says. “It is clear that quantum materials will continue to offer us surprises long into the future to open new pathways for addressing pressing fundamental science questions as well as materials platforms for developing transformational new technologies.”

Read more from Northeastern Global News.

Photo by Matt Modoono/Northeastern University

April 17, 2025
,

Breakthrough ALS research: Free tool from Northeastern scientists could revolutionize drug development

Interested in finding a better way to develop drugs to treat amyotrophic lateral sclerosis (ALS), Northeastern researcher Jeffrey Agar and a team of scientists came up with a technique that improves the drug discovery workflow for an entire class of pharmaceuticals.

“This could now become the gold standard for how covalent drugs are developed from now on,” says Agar, an associate professor of chemistry and pharmaceutical sciences.

The goal is to make the technique free and available to labs small and large, part of what Agar refers to as the “democratization of science.”

“We decided not to patent this,” he says. “Just take it, use it and make drugs safer.”

Read more from Northeastern Global News.

Photo by Matthew Modoono/Northeastern University

April 16, 2025

Your Tomorrow Starts Here. Learn More Today.