1. The height of a tide t hours after we start observing is given by $H(t)=5+A \sin \left(\frac{\pi t}{12.5}\right)$, where H is in feet.
a) (3 pts) If the maximum height of the tide is 23 feet, what is A ?
b) (6 pts) If we stay for 24 hours, how often do we see this maximum height and when do they occur?
2. a) (5 pts) Solve this system of equations algebraically. Show all steps.

$$
\left\{\begin{array}{l}
5 x+6 y=7 \\
-x-4 y=0
\end{array}\right.
$$

b) (4 pts) Sketch a graph of the system in part a) labelling the scale and the point of intersection.
3. Consider the functions $f(x)=\sqrt{\ln (x)}$ and $g(x)=e^{x^{2}+1}$.
a) $(3 \mathrm{pts})$ Solve $f(g(x))=2$ and $g(f(x))=e^{2}$
b) (3 pts) For which values of a does the equation $\mathrm{f}(\mathrm{g}(\mathrm{x}))=a$ have exactly one solution?
c) (3 pts) Do the graphs of $\mathrm{f}(\mathrm{g}(\mathrm{x}))$ and $\frac{g(f(x))}{e}$ intersect? Explain your answer.

