1. The height of a tide t hours after we start observing is given by $H(t)=5+A \sin \left(\frac{\pi t}{12.5}\right)$, where H is in feet.
a) (3 pts) If the maximum height of the tide is 23 feet, what is A ?
b) (6 pts) If we stay for 24 hours, how often do we see this maximum height and when do they occur?

Answers: (a) The largest sine can be is 1 so the max is $5+A=23$, so $A=18$, set up 2 pts answer 1 pt
(b) The max occurs when $\pi \cdot t / 12.5=\pi / 2+2 k \pi ; \pi \cdot t / 12.5=\pi / 2$ gives $t=6.25, \pi \cdot t / 12.5=\pi / 2$ $+2 \pi$ gives $t=31.25$ so we only see the max once after 6.25 hrs (reasoning and set up 4 pts answer $2 p t s ?)$
2. a) (5 pts) Solve this system of equations algebraically. Show all steps.

$$
\left\{\begin{array}{l}
5 x+6 y=7 \\
-x-4 y=0
\end{array}\right.
$$

b) (4 pts) Sketch a graph of the system in part a) labelling the scale and the point of intersection.

Answers: 3 pts set up and algebra; 2 pts answer - coordinates? Necessary or not for y ?
$5 x+6 y=75(-x-4 y=0) \rightarrow 5 x+6 y=7-5 x-20 y=0$
$\rightarrow-14 y=7 \rightarrow y=-0.5$ substituting into equation: $-x-4 y=0$
and solving for x gives: $-x-4(-0.5)=0 \rightarrow x=2$
Intersection point is $(2,-0.5)$
Graph below: (2pts - one for scale and lines one for intersection and scale)

3. Consider the functions $f(x)=\sqrt{\ln (x)}$ and $g(x)=e^{x^{2}+1}$.
a) (3 pts) Solve $f(g(x))=2$ and $g(f(x))=e^{2}$
b) (3 pts) For which values of a does the equation $\mathrm{f}(\mathrm{g}(\mathrm{x}))=a$ have exactly one solution?
c) (3 pts) Do the graphs of $\mathrm{f}(\mathrm{g}(\mathrm{x}))$ and $\frac{g(f(x))}{e}$ intersect? Explain your answer.

Solution and grading scheme: We first compute $f(g(x))=$ sqt $\left(x^{\wedge} 2+1\right)$ and $g(f(x))=e x$.
(a) Solving Sqt $\left(x^{\wedge} 2+1\right)=2$, we get $x^{\wedge} 2+1=4$, so $x^{\wedge} 2=3$ and therefore $x= \pm \operatorname{sqt}(3)$. Solving ex $=e^{\wedge} 2$, we get $\mathrm{x}=\mathrm{e}$. (1 pt for each composition formulas, and 2 pt for solutions -1 pt each)
(b) The equation sqt($x^{\wedge} 2+1$) = a will have a solution for x only if $a \geq 0$. In that case $x^{\wedge} 2+1=a^{\wedge} 2$, and so $x^{\wedge} 2=a^{\wedge} 2-1$. This will have a unique solution for x when $a= \pm 1$. (2 pt for simplification, 1 pt for conclusion)
(c) If the two graphs intersect, we must have $f(g(x))=g(f(x))$ e, i.e. $s q t\left(x^{\wedge} 2+1\right)=x$, which simplifies to $x^{\wedge} 2+1=x^{\wedge} 2$, or $1=0$. Therefore, this equation has no solution and so the graphs don't intersect. (2 pts for computation, 1 pt for conclusion)

