1.) Suppose $g(x)$ is a continuously differentiable function with $g(1)=2$ and $g^{\prime}(1)=3$. Let $h(x)=(g(x))^{2}$.
a.) Find $h^{\prime}(1)$.
b.) Find the equation of the tangent line to the graph $y=h(x)$ at $x=1$.
c.) Evaluate the limit

$$
\lim _{x \rightarrow 1} \frac{\sqrt{h(x)}-2}{g(x)-2}
$$

Solution:

a.) $h^{\prime}(x)=2 g(x) g^{\prime}(x)$, so $h^{\prime}(1)=2 \cdot 2 \cdot 3=12$
b.) $h(1)=4$ so $y=12 x-8$
c.) $\lim _{x \rightarrow 1} \frac{\sqrt{h(x)}-2}{g(x)-2}$ is of indeterminate form $\frac{0}{0}$ so apply l'Hospital's rule: $\lim _{x \rightarrow 1} \frac{\sqrt{h(x)}-2}{g(x)-2}=$ $\lim _{x \rightarrow 1} \frac{\frac{1}{2}(h(x))^{-1 / 2} h^{\prime}(x)}{g^{\prime}(x)}=\frac{\frac{1}{2} \cdot \frac{1}{2} \cdot 12}{3}=1$

Scoring Rubric:

$2: \begin{cases}1: & h^{\prime}(x) \\ 1: & \text { answer }\end{cases}$
$3: \begin{cases}1: & h(1)=4 \\ 2: & \text { equation of line }\end{cases}$
$4:\left\{\begin{array}{l}2: \text { l'Hospital's Rule } \\ 2: \text { answer }\end{array}\right.$
2.) Let $F(x)=\int_{1}^{x} f(t) d t$, where $f(t)=\int_{1}^{t^{2}} \frac{\sqrt{1+u^{4}}}{u} d u$.
a.) Over the interval $1 \leq x \leq 10$ is $F(x)$ concave up or down? Explain your reasoning.
b.) Find $F^{\prime \prime}(2)$.
c.) Find $\lim _{x \rightarrow 1} \frac{F(x)}{x^{2}-2 x+1}$.

Solution:

a.) $F^{\prime}(x)=\int_{1}^{x^{2}} \frac{\sqrt{1+u^{4}}}{u} d u$

$$
F^{\prime \prime}(x)=\frac{\sqrt{1+\left(x^{2}\right)^{4}}}{x^{2}} \cdot \frac{d\left(x^{2}\right)}{d x}=\frac{2 \sqrt{1+x^{8}}}{x}
$$

$F^{\prime \prime}(x)>0$ for $1 \leq x \leq 10$
$F(x)$ is concave up
b.) $F^{\prime \prime}(2)=\frac{2 \sqrt{1+2^{8}}}{2}=\sqrt{257}$
c.) $F(1)=\underset{F(x)}{0}$ and $1^{2}-2(1)+1=0$ so $\lim _{x \rightarrow 1} \frac{F(x)}{x^{2}-2 x+1}$ is of indeterminate form $\frac{0}{0}$. Apply l'Hospital's Rule:
$\lim _{x \rightarrow 1} \frac{F(x)}{x^{2}-2 x+1}=\lim _{x \rightarrow 1} \frac{F^{\prime}(x)}{2 x-2}$
$F^{\prime}(1)=0$ and $2(1)-2=0$ so again we have indeterminate form $\frac{0}{0}$. Apply l'Hosptial's Rule: $\lim _{x \rightarrow 1} \frac{F^{\prime}(x)}{2 x-2}=\lim _{x \rightarrow 1} \frac{F^{\prime \prime}(x)}{2}=\frac{\sqrt{1+1^{8}}}{1}=\sqrt{2}$.

Scoring Rubric:

$4:\left\{\begin{array}{l}1: F^{\prime}(x) \\ 1: F^{\prime \prime}(x) \\ 2: F^{\prime \prime}(x)>0 \text { and answer }\end{array}\right.$
$1:\{1:$ answer
$4:\left\{\begin{array}{l}2: \text { first l'Hospital's correctly } \\ 2: 2 \text { nd l'Hospital's correctly }\end{array}\right.$
3.) A rectangular box with square top and bottom is to be made of two materials. The material for the top and bottom costs $\$ 5$ per square foot and the material for the sides costs $\$ 3$ per square foot.
a.) Suppose the total volume is to be 45 cubic feet. Find the dimensions that minimize the cost.
b.) Suppose the total cost is set to $\$ 120$. Find the dimensions that maximize the volume.

Solution:

a.) Let x be the side length of the square top and bottom and let y be the height of the box. The combined area of top and bottom is $2 x^{2}$ and the area of the sides of the box is $4 x y$, so the total cost of the box is

$$
C(x, y)=10 x^{2}+12 x y
$$

The volume is $x^{2} y=45$, so we can eliminate y from $C(x, y)$ to obtain

$$
\begin{gathered}
C(x)=10 x^{2}+12 x \cdot \frac{45}{x^{2}}=10 x^{2}+\frac{12 \cdot 45}{x} \\
C^{\prime}(x)=20 x-\frac{12 \cdot 45}{x^{2}}=0
\end{gathered}
$$

means that $x=3$, and then from $x^{2} y=45$ we find $y=5$. So the dimensions that minimize cost are $x=3$ feet and $y=5$ feet.
b.) $120=10 x^{2}+12 x y$ and $V(x, y)=x^{2} y$

Eliminate y from $V(x, y)$
$V(x, y)=x^{2}\left(\frac{120-10 x^{2}}{12 x}\right)=12 x-\frac{5}{6} x^{3}$.
$V^{\prime}(x)=10-\frac{5}{2} x^{2}=0$ means $x=2$. Thus $y=\frac{10}{3}$. The dimensions that maximize the volume are $x=2$ feet and $y=10 / 3$ feet.

Scoring Rubric:

$5: \begin{cases}1: & \text { cost function } \\ 1: & \text { volume function } \\ 1: & \text { putting cost in terms of } x \\ 1: & \text { derivative of cost } \\ 1: & \text { answer }\end{cases}$
$4:\left\{\begin{array}{l}1: \text { cost and volume } \\ 1: \text { putting volume in terms of } x \\ 1: \text { derivative of volume } \\ 1: \text { answer }\end{array}\right.$

