2022 Calculus Field Day at Northeastern

April 22, 2022
Calculus BC - Session 2

Directions:

- This is Calculus BC, Session 2. Graphing calculators are NOT ALLOWED for this session.
- Write your responses as neatly and as clearly as possible. Label all problems and parts.
- Show all relevant work. A correct answer with missing justification may not receive full points.
- Numerical answers should be exact or rounded to three decimal places, unless otherwise instructed.
- There are 3 problems in this session, each worth 10 points in total.
- Time: 30 minutes.

Do NOT go to the next page until you are directed to begin.
4) A rowboat is tied to a dock, and waves hitting the boat cause it to move up and down slowly. The height in inches of the boat above the dock after t minutes is given by the function

$$
h(t)=4 \sin ^{2}(t)+4 \sin (t)-3
$$

whose graph is shown below.

(a) Calculate the value $h^{\prime}(\pi)$, including correct units, and briefly describe the meaning of this quantity in the context of the problem.
(b) What is the average height of the boat during the interval $0 \leq t \leq 2 \pi$ minutes?
(c) Between time $t=0$ minutes and time $t=2 \pi$ minutes, for how much total time is the boat above the surface of the dock?
(d) Give an integral expression for the average height of the boat during the time it is above the dock. (You do not need to evaluate the integral.)
5) Let $g(x)=\sqrt{x}$ for $x \geq 1$ and let R be the region lying below the graph of $y=g(x)$, above the line $y=1$, and to the left of the line $x=9$:

(a) Find the area of the region R.
(b) If the region R is revolved around the x-axis, what is the volume of the resulting solid?
(c) The region R is the base of a solid whose cross-sections perpendicular to the x-axis are squares. What is the volume of the solid?
6) A function $f(x)$ is defined by the Maclaurin series

$$
f(x)=\frac{1}{4} x-\frac{2}{4^{2}} x^{2}+\frac{3}{4^{3}} x^{3}-\frac{4}{4^{4}} x^{4}+-\cdots+(-1)^{n+1} \frac{n}{4^{n}} x^{n}+\cdots
$$

for all real numbers x such that the series converges.
(a) Find, with justification, the interval of convergence of the Maclaurin series for $f(x)$.
(b) Find the value of the limit $\lim _{x \rightarrow 0} \frac{f(x)-x / 4}{x^{2}}$.
(c) Express the value of $\int_{0}^{1} f(x) d x$ as an infinite series.
(d) Use the infinite series in (c) to give a rational number expression approximating $\int_{0}^{1} f(x) d x$ to within an error of at most $1 / 1000$, making sure to justify why the error is at most $1 / 1000$. (You do not need to simplify the rational number expression.)

