An Analysis of the Syntax of Comanche

Samantha Price

Northeastern University
1 Introduction

This paper discusses Comanche syntax, examining both its complexities and its unique relationship with the language’s morphological system. Section 2 provides a brief overview of the language: its historic roots, its evolution, and its current state. The following section (Section 3) supplies details about Comanche’s basic SOV word order, including instances where this word order is maintained and situations where irregular word orders arise. The typology of Comanche’s word order is examined as well, with an emphasis on whether it possesses the characteristics of a typical SOV language. Section 4 focuses on the formation of noun phrases and the structures that are commonly seen (basic nouns, nouns/determiners, objective/possessive nouns, nominal case markings). Section 5 transitions to verb phrases, specifically the structure of phrases with different verb types (intransitive, transitive, etc.), as well as the construction of questions. Lastly, two significant features of Comanche’s morphosyntax are highlighted in Section 6: case reference markers and oblique relatives.

2 Sociolinguistic Profile

This section presents a brief overview of the Comanche language. Comanche is spoken by members of the Comanche Nation in Western Oklahoma. Although this tribe once dominated the Great Plains region of the Western U.S. and Mexico, historical mistreatment of Native Americans by westward-bound settlers led to its decline and present-day diminished state (Charney 1993:1). Today, the Comanche tribe is surrounded by a diverse collection of other Native American nations (see Figure 1); few
of these tribes are members of its Numic genus or Uto-Aztecan family due to the U.S. government’s tribal relocation policies.

Figure 1: Map of Southeastern U.S.; Comanche Nation circled in red (Ethnologue 2009).

According to WALS, languages within Comanche’s genus and family, like Chemehuevi and Kawaiisu, are found in California and its neighboring states. Comanche’s closest language relative is Shoshone; the Comanche and Shoshone tribes were once a united nation inhabiting the Plains-Plateau-Basin area of modern day Wyoming (Charney 1993:1). When a group of Shoshones migrated to the Plains after 1850, their communications became the linguistically distinct Comanche language (Charney 1993:2).

As of the year 2007, there were 100 remaining native Comanche speakers (all over the age of fifty) within an ethnic population of 8,500. Since the language is no
longer transmitted to offspring, this number has likely decreased since then. English-
Comanche bilingualism tends to exist among the older generation because of English’s
dominance and wider appeal. While Comanche may have been utilized extensively
during the tribe’s height of power, the lack of native speakers today results in the
language’s confinement to a small area. Ethnologue classifies this language as 8a
(moribund/nearly extinct, see Figure 2), and UNESCO characterizes it as severely
endangered, meaning the language is solely spoken by older generations. Comanche’s
relatives have fared slightly better; Shoshone and Chemehuavi are categorized as
threatened, with evidence of occasional transmission to offspring.

![Figure 2: Comanche’s placement on the EGIDS scale (8a) (Ethnologue 2018).](image)

There is no concrete evidence to indicate the acquisition of Comanche by non-
native speakers, though classes in the language were offered at the University of
Oklahoma (as reported in 2007). Comanche is preserved in various texts, but it is rarely
utilized functionally in private or public settings, and there is yet to be a widespread
movement to revive the language.
This paper primarily derives its information from Jean Ormsbee Charney’s *A Grammar of Comanche*, as this grammar is both the most recent and the most comprehensive examination of the Comanche language (according to WALS). Charney constructed her grammar with the consultants Lucille McClung, Agnes Wermy, and Theresa Saupitty throughout the 1980s, favoring these firsthand accounts over other linguists’ dated evidence. Other notable resources (specified by WALS) include Elliott Canonge’s compilation of Comanche folklore and anecdotes (1958), Henry Osborn and William A. Smalley’s study of Comanche word formation (1949), and Venda Riggs’s *Alternate Phonemic Analyses of Comanche* (1949). Another related work is Lila Wistrand-Robinson and James Armagost ‘s *Comanche Dictionary and Grammar* (1990). As Charney mentions, that grammar employs Canonge’s Comanche texts rather than data from language consultants (1993:3). Wistrand-Robinson and Armagost’s work is consulted for this paper, but Charney’s grammar remains the predominant source unless otherwise stated.²

3 Word Order

This section analyzes the word order of Comanche, beginning with an explanation of its customary Subject-Object-Verb structure (Section 3.1). Although this structure defines the language, there is a degree of fluidity allowed in the placement of words, as morphological markers are favored to provide context and define grammatical categories. Consequently, Section 3.2 briefly describes common irregular word orders and their causes. Section 3.3 concludes with an analysis of the typology of Comanche syntax and
the characteristics of the language that might align (or differ) with the features of SOV languages in general. For the examples of this section (and the entire paper), Role and Reference Grammar (RRG) constituent projections are used to display the syntactical complexities of a polysynthetic language like Comanche. For information about the Leipzig abbreviations and the phonemic symbols that are employed, consult Section 9.1 and Section 9.2 respectively. For more information about Comanche word order, see Charney (1993:194).

3.1 Basic Word Order

As mentioned above, the general structure of Comanche sentences is Subject-Object-Verb. Although the subject usually precedes the object and verb, it is often not the first word in a sentence, as “there is a strong tendency in Comanche for the subject to be moved into sentential second position” (Charney 1993:94). The element in the first position is determined by the topicalized particles -tsa or -se (discussed further in Section 3.2). Example 1 provides two simple sentences with SV or SOV word orders and no adjuncts.

(1) a. \(ni \, n \, i \, -se \quad po \, -k^{w} \, api \, -ti = \)
IPL.EXCL-CNTR water-lie.PL.SBJ-GEN:ASP
\(\) ‘We swam.’

b. \(ni \, -se \quad uhti \quad ma \, ka \, -n \)
1SG-CNTR 3PL.OBJ feed-CMPL:ASP
\(\) ‘I fed them.’
The structures of both examples are consistent with what one would expect from an SOV language. *Figure 3* provides an RRG projection for data point (1a); it demonstrates the straightforward, typical structure of an SV sentence. The subject argument comes before the verb nucleus.

The placement of adjuncts in Comanche sentences tends to vary, depending on the types of sentences and other factors (discussed in 3.2). There is no definable pattern, but instrumental prefixes are a popular choice to add specific details to a sentence. Each instrumental prefix corresponds to some physical action that can make an intransitive verb become transitive (Charney 1993:117). For more information about instrumental prefixes and their functions, consult Charney (1993:117-123). Example 2 offers
instances of Comanche sentences which involve instrumental adjuncts. The instrumental prefixes and their corresponding meanings are highlighted in bold.

(2) a. \textit{ɾeɾun-tsa\textit{ hu: tsu: -ʔ a ki H-ja: -ka=ti =}}
\begin{tabular}{l}
\textit{name-top} & \textit{bird-obj} & \textit{ins.in.mouth-carry.sg.obj-have} \\
\end{tabular}
\begin{tabular}{l}
\textit{‘Rerun (a dog) has a bird in his mouth.’}
\end{tabular}

b. \textit{ni -tso? nika -ʔ a \textit{tsaH-kwc? ja-i}}
\begin{tabular}{l}
\textit{1sg.poss-hat-obj} & \textit{1sg} & \textit{ins.with.hand-remove.sg.obj-cmpl:asp} \\
\end{tabular}
\begin{tabular}{l}
\textit{‘I took off my hat (with my hand).’}
\end{tabular}

In both point (2a) and point (2b), the instrumental prefixes function as adjuncts because they are not necessary for each sentence to make sense.

\textit{Figure 4} represents the RRG constituent projection for data point (2a). As can be seen by the diagram, the phrase ‘in his mouth’ is treated as a periphery; the sentence would still be complete without the phrase, indicating that it is not an argument. The verb’s meaning is already ‘hold/carry’, so the addition of ‘in his mouth’ only adds further information about how the object is carried.
There are other, rarer variations of adjuncts and main clauses, but to explore them is beyond the scope of this paper.

3.2 Alternative Word Orders

The main sources of variant word orders in Comanche are the topic suffixes -tsa and -se. Any morpheme that is suffixed with either of these particles becomes the first word in a given sentence, forcing the subject into a sentential second position (Charney 1993:194).

As a result, Comanche sentences often begin with various word types. In the case where there is no topicalized particle attached to any morpheme, the subject moves to the second position automatically. Two common Comanche sentence structures, Object-Subject-Verb and Object-Verb-Subject, are formed in the latter way. Transitive
sentences (discussed further in Section 5.2.2) often have the OSV order when the object of the sentence is nominal. Example 3 demonstrates instances with and without the topic particle.

(3) a. \textit{otik}ˈ\textit{kwi} h-\textit{tsa} \textit{na}\textit{na}-\textit{kwi} =-\textit{tu-i-ni} \textit{kwi} h
 \texttt{those.DU-TOP RECP-female-marry-CMPL:ASP-DU}
 ‘Those two are getting married.’

 b. \textit{ni}\-\textit{waʔo ni : na suwat\textit{si-n}}
 \texttt{my-cat.OBJ 1SG forget-CMPL:ASP}
 ‘I forgot my cat.’

As can be seen by the bolded element in data point (3a), \textit{otik}\textit{i}h suffixed with the topic particle begins the sentence. \textit{Figure 5} displays the RRG projection for data point (3a).

\textit{Figure 5}: Represents a sentence with the topic particle -\textit{tsa}.
None of the morphemes possess the topic particle in data point (3b), so the nominal object subsequently replaces the subject in the first position. Figure 6 displays the RRG projection for data point (3b), where the object argument and subject argument have reversed positions, and the verb nucleus ends the sentence.

```
SENTENCE  
|  
CLAUSE  
|  
CORE  
|  
ARG      ARG      NUC  
|  |  |  
NP      NP      V  
|  |  |  
ni-waʔo  ni:   nasuwaṭsi-n  
my-cat.0BJ  1SG  forget-CMPL:ASP  
```

‘I forgot my cat.’

Figure 6: Represents an OSV sentence structure.

The other irregular word order is Object-Verb-Subject, which occurs with transitive sentences involving pronominal objects (Charney 1993:194). Instances of this are found in Example 4.
(4) a. u-$tol\text{-}\text{ti} \; k^w\text{ai-}\text{?i} \; ni$:
 $\text{3SG.OBJ-INS.violent-hit-CMPL:ASP} \; \text{1SG}$
 ‘I hit him (violently).’

b. $ama\text{-}\text{wi} \; mbina\text{-}\text{ka-}\text{ti} = \text{ni}$:
 $\text{side-sick-have} \; \text{1SG}$
 ‘I have pneumonia.’

Again, the lack of the topic particle leads to a secondary position for the subject. The RRG constituent projection for data point (4a) can be found in Figure 7. In this case, the verb nucleus follows the object argument, with the subject argument acting as the last element of the sentence. This example also demonstrates how instrumental prefixes can work as adjuncts, as the instrumental here ($tol\text{-}$) serves to indicate that the hit was violent.

```
SENTENCE
  \|                     \|
 CLAUSE
  \|                     \|
 PERIPHERY \rightarrow CORE
  \|                     \|
   ARG                     NUC                     ARG
     \|                     \|                     \|
      NP                     ADV                     V                     NP
          \|                     \|                     \|
           $u$-                 $toH$-                 tik$^w$ai-\text{?i} \; \text{ni}$:
                $\text{3SG.OBJ-INS.violent-hit-CMPL:ASP} \; \text{1SG}$
      ‘I hit him (violently).’
```

Figure 7: To demonstrate an OVS sentence structure
3.3 Word Order Typology

Comanche is an SOV language, a characteristic it shares with 45% of all languages (Aitchison 2010: 121). However, the prevalence of sentences with OSV and OVS structures in the language is atypical, considering that most world languages favor subject-initial sentences.

Overall, the syntactic processes of Comanche match those of other OV languages. For the most part, postpositions are favored over prepositions, there are separate subjective and objective case markings, there tends to be no morphemic representation of articles, and prepositions usually precede the verbs they modify, among other typical characteristics.

One notable irregularity is the placement of Comanche’s interrogative morphemes. Unlike most OV languages that have clause-internal question words, Comanche’s question words (or more appropriately, morphemes) can be clause-initial as well. Question formation is discussed further in Section 5.3.

The other significant irregularity is the reversal of position for the relative clause and the noun it modifies. A common trait of SOV language structure is a relative clause preceding the noun it modifies. But the structure of Comanche relative clauses can be totally different, with the basic formation for the subject relative clause being $[\text{SBJ(-tsa)} \ [\text{REL.CL(-tsa)}] \ \text{MAIN.VERB}]$ (Charney 1993:238). An instance of this is seen in Example 5:
As seen in the above example, the man (the subject of the sentence), comes before the relative clause ‘who killed the cow…’. This is a violation of the typical OV structure. Consult Charney (1993:237-245) for more information about relative clauses in Comanche.

Other than these specific abnormalities, Comanche is an SOV language that tends to possess the characteristics of other SOV languages.

4 Survey of Noun Phrases

Generally, noun phrases in Comanche are determined by morphological elements; compounding, affixation, and other similar processes can produce a variety of complex nouns. These processes are briefly described in Section 4.1. For more information about Comanche noun formation, consult Charney (1993:47-71). The sections subsequent to 4.1 (4.2 and 4.3) discuss noun case markings and nominal suffixation, both morphological processes that create noun phrases and affect Comanche phrases syntactically.

In terms of dependency, Comanche can be considered a head-marking system, as the verb (as the head) of a phrase is usually found to be marked. Nouns can also be marked as heads. Examples to support this claim are found in the following sections.
4.1 Basic Nouns

The formation of basic nouns (and noun phrases) is done almost exclusively through morphology. The exception would be the placement of a qualifier before the noun (with no affixation); this paper will not explore that process in detail.

One feature of noun formation is compounding. The most common Comanche compounds begin with a noun, followed by another noun or a verb. The grammatical category of the second word determines the category of the entire structure (Charney 1993:58). Based upon Charney’s grammar, there is no explicit limit upon the number of words that can be compounded. Example 6 illustrates two types of noun-noun compounds:

(6) a. \(\text{ta}: -\text{ci} \ h \ \text{ka} =\text{pi} \ h \)

morning-eat-NOM
‘oatmeal’

b. \(\text{taipo-pi}:\text{na}:) \)

white.man-sugar
‘cantaloupe’

The syntax tree for data point (6a) (in Figure 8) demonstrates both the simplicity and the basic compounding of these constructions.
The other popular form of noun/noun phrase creation in Comanche is nominalizing suffixation. Nominalizing suffixation describes the process in which affixes are attached to non-nouns to form new nouns (Charney 1993:60). The subsequent sections delineate specific prefixes and suffixes that convert (primarily verb) stem forms into nouns. Refer to Charney (1993:60-69) for more specific details on nominalization. Example 7 demonstrates the process through the nominalizing prefixes na- and ta= and the nominalizing suffix -na.

\[
\begin{align*}
\text{NP} & \\
\text{N} & \quad \text{N} \\
\text{ta:-} & \quad \text{tibka-=pih} \\
\text{morning-} & \quad \text{eat-NOM} \\
\text{‘oatmeal’} &
\end{align*}
\]

\textit{Figure 8: Basic noun formation through compounding.}

(7) a. \textit{ra-a \textit{ti} \textit{mi}}
\begin{flushleft}
\text{NOM-buy} \\
\text{‘store’}
\end{flushleft}

b. \textit{\textit{tu}=\textit{nohi-\textit{nu}}}
\begin{flushleft}
\text{INDF.SBJ-play-NOM} \\
\text{‘a fair’}
\end{flushleft}

As can be seen by the absence of a Comanche equivalent for the determiner a in the first line of data point (7b), noun determiners in Comanche are not specially marked;
they are often implied through the modification of the root word. Another feature of note is that in the formation of the noun for data point (7b), the resulting noun phrase is marked as subjective. This example supports Comanche’s head-marking characteristics.

4.2 Noun Case Markings

Comanche nouns can be marked for the subjective, objective, and possessive cases through affixation. Since the subjective case markings are nearly identical to the objective, Section 4.2.1 solely discusses objectives, and Section 4.2.2 demonstrates possessive markings.

4.2.1 Objective Case [-Ø, -ʔa, -ha, -i, -e, -ta, -ʰta]

The objective case is used to indicate when a noun is an object in a specific phrase. Although there are a few general rules for the case suffixes that different nouns receive, there is still an element of unpredictability in what suffix is the most appropriate for a given noun.

The lack of a suffix (-Ø) usually appears after nouns that end in -i, as seen in Example 8.

(8) **kahni-(Ø) u puni**

house-obj 3SG see

‘He sees the house.’

A noun can have the -i suffix if it ends in a vowel other than -i and -e (Example 9).
(9) \textit{puku-i u puni} \\
\textit{horse-OBJ 3SG see} \\
‘He sees a horse.’

As seen in the example above and Example 7, Comanche determiners are not concrete: there is no direct representation for the determiner \textit{a}. \textit{Figure 9} displays an RRG projection for this sentence. The objective case marker (-i) pairs with the noun (\textit{puku}) to form a direct object.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure9.png}
\caption{Example noun with objective case marker}
\end{figure}

Example 10 demonstrates that the suffix -\textit{ta=} attaches to nouns ending in -\textit{wi} or -\textit{pi}.

(10) \textit{toya -pi-\textit{ta}} \\
\textit{mountain-ABS-OBJ} \\
‘mountain’
Charney does not specify rules for the other possible suffixes; Example 11 illustrates two suffixes and words they appear in.

(11) a. \textit{mupica}i-ʔa
\text{walnut-OBJ}
‘walnut’

b. \textit{napi} b-\textit{ha}
\text{shoe-OBJ}
‘shoe’

4.2.2 Possessive Case \([-\emptyset=, -? \ast=, -\text{ha}=, -i=, -c=, -\text{ta}=, -\text{I}\text{ta}=] \]

In Comanche, the possessor appears before the possessed object, and the possessive markers are relied upon to define the possessive phrase (Charney 1993:56). Example 12 provides brief examples of how the possessive works in the context of a noun phrase.

(12) a. \textit{Mi}a-ʔa=\textit{tsa} \quad \textit{sa} ti? i
\text{name-POSS-TOP} \quad \text{dog}
‘Mia’s dog’

b. \textit{Phil-\text{ha}}= \quad \textit{na\textbackslash bukuwa} \quad \text{-?a-}
\text{name-POSS} \quad \text{car-OBJ-by}
‘by Phil’s car’

As clearly seen for both examples, the heads are marked as possessives (\textit{Mia’s} and \textit{Phil’s}), which is strong evidence that Comanche is a head-marking language.

Although there are instances where dependents can be marked as well, in most possessive cases the head is solely marked. The RRG projection for data point (b) is in Figure 10.
As can be seen, the possessive suffix, preposition, and noun interact to form a prepositional phrase.

Nominal suffixes, another morphological feature of Comanche that produces noun phrases, involves dual and plural states. Charney mentions that human nouns are required to have a suffix signifying number, but these suffixes are unnecessary for animate and inanimate nouns (1993:50).
<table>
<thead>
<tr>
<th>Objective</th>
<th>Possessive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual</td>
<td>-nikwh-ha</td>
</tr>
<tr>
<td></td>
<td>-nihi</td>
</tr>
<tr>
<td></td>
<td>-nikwh-ha=</td>
</tr>
<tr>
<td></td>
<td>-nihi=</td>
</tr>
<tr>
<td>Plural</td>
<td>-ni:</td>
</tr>
<tr>
<td></td>
<td>-ni:=</td>
</tr>
</tbody>
</table>

Table 1: Displays the appropriate noun suffixes based on the nominal and case values. (Adapted from Charney (1993:50))

Example 13 illustrates two of the possible case/nominal marker combinations.

The suffixes in bold correspond to those of *Table 1*.

(13)

a.

\[\text{satí} \text{i-} \text{nihi}\]

`dog-DU.OBJ`

‘two dogs’

b.

\[\text{ti } \text{ce-satí} \text{i-} \text{ni:}\]

`child-dog-PL.OBJ`

‘puppies.’

c.

\[\text{pia} \text{-wa} \text{? o-} \text{ni kwí h-ha=} \text{nati } \text{mi}\]

`big-cat-DU-POSS` `owner`

‘the owner of the two big cats’

(Alternative: ‘big two cats’ owner’)

Data point (13a) demonstrates the noun phrase constructed with the dual specifier. Data point (13b) provides an example of the plural marker, and data point (13c) shows both the dual maker and the possessive marker in action. Data point (13c) also portrays a noun phrase with the adjective (pia) as a morpheme that is prefixed to the root noun.

Figure 11 constructs an RRG projection for data point (13a).
Figure 11: To demonstrate relationship between dual marker and noun.

This projection’s structure reflects the ability of the nominal marker to act as an adjective/modifier upon the noun to create a new noun phrase.

5 Survey of Verb Phrases

Similar to Comanche nouns, verbs in the language are modified by a variety of morphological processes. For additional information about these processes, consult Charney (1993:113-135). Section 5.1 discusses the nominal agreement between verbs and noun number (singular, plural, and dual). Section 5.2 outlines specific types of verb phrases, focusing on statements that vary in verb type. Section 5.3 concludes with question formation.
5.1 Nominal Agreement

The major forms of agreement in Comanche involve Subject-Verb agreement and Object-Verb agreement. Essentially, any noun phrase (particularly pronominal phrases) must agree in number (singular, dual, plural) with the verb phrase of a particular sentence. That is, the subject noun phrase of a sentence and the object noun phrase of a sentence should have nominal suffixes that correspond to the verb phrase. The nominal suffixation process that forms agreement is introduced in Section 4.3; for more information, refer to those examples, or Charney (1993:50).

5.2 Verb Phrase Types

This section analyzes three types of verb phrases: intransitive (Section 5.2.1), transitive (Section 5.2.2), and ditransitive (Section 5.2.3). For each verb phrase, the overall structure of the sentence is analyzed and an RRG constituent projection is produced from that analysis. The type of Comanche verb has a significant effect on the overall syntax of any one sentence. Charney (1993:223-247) contains more information about various forms of verb phrases.

5.2.1 Intransitive Sentences

According to Charney, the intransitive sentences of Comanche contain one predicate and one nominal; the verb can be replaced with a nominal or predicating suffix in certain situations (1993:194). Intransitive sentences can range from impersonal statements about the weather to equative statements that articulate facts (Charney 1993:196). There is not
one predictive form that an intransitive verb phrase can take; as discussed in Section 3.2, other factors (like topicalized markers) influence the placement of the nominal and the predicate. Example 14 displays sample intransitive sentences (with 14b reproduced from Example 1).

(14) a. \textit{jū: -pǐ h u}\\ fat-\text{PRED} 3\text{SG}\\ ‘He is fat’.

b. \textit{nǐ n: i -se pa: -kʷ aπi-ti =}\\ 1\text{PL.\text{-EXCL-CNTR}} \text{\ water-\text{lie.\text{PL.\ SBJ-\text{GEN:ASP}}}\\ ‘We swam.’}

In data point (14a), the verb is implied; the sentence only contains two nominals. Data point (14b) does include a verb, and it also reflects an SV word order due to the lack of a topicalized particle in the sentence. The RRG projection for data point (14b) (found in Figure 3 and reproduced in Figure 12) reinforces the standard SV structure, with the pronoun preceding the noun.

\begin{figure}
\begin{center}
\begin{tikzpicture}
 \node[SENTENCE](sentence) {	extit{SENTENCE}};
 \node[CLAUSE, below of=sentence] {	extit{CLAUSE}};
 \node[CORE, below of=CLAUSE] {	extit{CORE}};
 \node[ARG, below of=CORE] {	extit{ARG}};
 \node[NUC, below of=ARG] {	extit{NUC}};
 \node[PRED, below of=NUC] {	extit{PRED}};
 \node[NP, below of=PRED] {	extit{NP}};
 \node[V, below of=Np] {	extit{V}};
 \node[nǐn:se, below of=Np] {	extit{nǐn:se}};
 \node[pa: -kʷ aπi-ti =, below of=nǐn:se] {	extit{pa: -kʷ aπi-ti =}};
 \node[1\text{PL.\text{-EXCL-CNTR}}, below of=pa: -kʷ aπi-ti =] {	extit{1\text{PL.\text{-EXCL-CNTR}} \text{\ water-\text{lie.\text{PL.\ SBJ-\text{GEN:ASP}}}\\ ‘We swam.’}};
\end{tikzpicture}
\end{center}
\end{figure}

\textit{Figure 12: To represent the structure of an intransitive sentence.}
5.2.2 Transitive Sentences

A transitive sentence, consisting of a predicate and two (or more) nominals, has a higher level of complexity than the intransitive verb phrase due to the introduction of an object. As previously mentioned, the object follows the subject in normal cases, but there are a variety of situations where the word order in a sentence may change (see Section 3.2 for more information.) Example 15 establishes the structure of transitive sentences.

(15) a. *pui*-puha-*to*ipo? -a ni : puni-*tu?i*
 eye-medicine-white.man-OBJ 1SG see-UR:ASP
 ‘I’m going to see an eye doctor.’

 b. *Brandy*-tsa i ki -a “pi -tu-a i-i
 name-TOP new-father-acquire.relative-do-CMPL:ASP
 ‘Brandy got a new stepfather.’

Comparing points (15a) and (15b), one can see that the topicalized particle in the latter allows the subject to remain at the beginning of the sentence, which is not true for the former. The RRG projection of (15a) highlights the OSV word order of the sentence, as the direct object has a longer-distance dependency with the verb than it would have in the standard SOV word order. Figure 13 demonstrates this projection.
This structure clearly differs from the intransitive structure, as the subject of the sentence is surrounded by a direct object and a verb as opposed to only preceding a verb like the pronoun in Figure 12.

5.2.3 Ditransitive Sentences

Ditransitive verbs build upon the structure of transitive verbs. They possess predicates and multiple nominals, with one of these nominals acting as the direct object and the other acting as an indirect object. There is no specific rule for the position of an indirect object in relation to the direct object, although the indirect object often comes after the direct object (Charney 1993:204). Exceptions to that structure can be found throughout the paper. Example 16 provides a sample ditransitive sentence, with the direct and indirect object bolded.
The RRG projection for Example 16 is displayed in Figure 14.

Figure 14: To represent the general structure of a ditransitive verb.

What sets this sentence structure apart, as seen in Figure 14, is the increase in arguments that connect to the core: the indirect object, the direct object, and the subject.
5.3 Interrogation

Question formation in Comanche is similar to most other forms of sentence construction in that it is morphologically based. Section 5.3.1 briefly outlines the structure of yes-or-no questions and the involvement of the verb phrase. Section 5.3.2 does the same with WH-questions, as well as includes an RRG projection to highlight the major features. For more information about Comanche interrogatives, refer to Charney (1993:209-216).

5.3.1 Yes-or-No Questions

The morphological marker used to form a yes-or-no question is the suffix particle -ha, which is placed after the first constituent in a given sentence (Charney 1993:209). The first constituent in these structures is always the one being questioned. The verb is never directly affected by the suffix, but it plays an important role in the ultimate semantic meaning of the question, as seen in Example 17.

(17) a. \(i \ n: i \ -ha \ pi \ esi = \)
 2sg-quest ready
 Are you ready to go?

 b. \(so\ i = -ha \ \ \ pia = -kw a \ su? \ u = -pa \ i \)
 that.one-quest big-shirt-have
 ‘Does she have a coat?’

As the structure of the sentences do not change drastically with yes-or-no questions, this section does not contain an RRG constituent projection.
5.3.2 WH-Questions

WH-questions are formed through the interrogative morphemes (which usually begin with *ha-*or *hi-*) that are placed at the beginning of a given sentence, except in the presence of certain pronominals (*this*, *that*, etc.). The verb phrase is not directly modified in this case. *Table 2* lists all question morphemes and their meanings.

<table>
<thead>
<tr>
<th>WH-Question Morpheme</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>haka-</td>
<td>‘who? which? whom? whose?’</td>
</tr>
<tr>
<td>hini=</td>
<td>‘what? what kind of?’</td>
</tr>
<tr>
<td>bi :-</td>
<td>‘how many?’</td>
</tr>
<tr>
<td>bi=pe-</td>
<td>‘when?’</td>
</tr>
<tr>
<td>haka h-</td>
<td>‘where?’</td>
</tr>
<tr>
<td>haka niju=t`i h-*</td>
<td>‘why?’</td>
</tr>
<tr>
<td>haka i-</td>
<td>‘how? what kind of?’</td>
</tr>
</tbody>
</table>

Table 2: All potential interrogative morphemes for WH-questions.

Example 18 displays two instances of the interrogative morphemes from Table 2.

(18) a. *haka*-*maʔai sut* =
 who-with that.one
 ‘Who is he with?’

b. *hini*-`cu*`*ka* = *suti* =
 what-under that.one
 ‘What is he under?’
Figure 15 depicts an RRG projection that corresponds to data point (18a). As can be seen from the projection, the only true modification to the sentence to make it interrogative is the insertion of a question morpheme at the beginning of it. The morpheme *maʔai* (with) acts as both a preposition and the verb nucleus in this instance, as there is no direct morpheme to express the verb *is*.

```
SENTENCE
  | CLAUSE
  |   PrCS CORE
  |       NUC ARG
  |           NP V NP
  |   `haka- maʔai sutii =`
  |     who- with that one
  | `Who is he with?'
```

Figure 15: To represent the basic structure of a WH-question.

6 Morphosyntax

As a polysynthetic language, Comanche has countless examples of morphosyntactical processes that lead to complex phrase and sentence formation. For the purposes of this paper, two such processes, switch reference markers (Section 6.1) and oblique relatives (Section 6.2) are briefly discussed below.
6.1 Switch Reference Markers

As sentences in Comanche become increasingly complex, specific markers are used to
determine “that the clause has the same subject as the main verb (identical reference) or a
different subject (switch reference)” (Charney 1993:228). Essentially, the subordinate
verb of the sentence has an affix that indicates whether its subject is the main verb’s
subject and whether these verbs are occurring at the same time. The morpheme used to
indicate a switch reference (when the verbs are occurring at the same time) is the suffix
-ku, which is attached to the subordinate verb. The suffix -ka is often utilized when both
the subjects and the times are different (Charney 1993:233). To find out more
19 shows the context in which switch reference markers (both -ka and -ku) would be
present. Figure 16 represents the RRG projection for data point (19a) and Figure 17
represents the projection for data point (19b).

(19) a. \(ni: -se \ ma-pohiy-a -noo-ku \ ti^b \ ka-h \)
 \(1SG-CNTR\ 3SG-walk-MTN.\around\SWITCH\ eat-ONGO:ASP \)
 ‘I was eating when he was walking along.’

b. \(u-mia ki=-\tsi \ = \ uti : \ = \ u-na ma nuki-ka \)
 \(\text{him-chase-GEN:ASP.PL those.ones him-run.away-SWITCH} \)
 ‘They’re chasing him because he ran away.’
Figure 16: To demonstrate an instance of the switch marker -ku.

Figure 17: To demonstrate an instance of the switch marker -ka.
In the first data point (19a), the actions of eating and walking are occurring at the same time, so the suffix -\textit{ku} is the logical choice. In data point (19b), the individual in question ran away first, and now people are chasing him. Thus, the aforementioned marker (-\textit{ka}) is used to reflect that.

6.2 Oblique Relatives

Oblique relatives are defined as clauses that modify locatives and expressions of time and manner (Charney 1993:246). To form them, the reflexive-possessive prefix \textit{pi}- is attached to an adverbial, which leads to the nominalization of the verb in the adverbial phrase. The subject of that clause usually becomes possessive as well (Charney 1993:246). For more information about these relatives, refer to Charney (1993:246-248).

A brief example (Example 20) is given below.

\begin{exe}
\begin{tabular}{l}
(20) \textit{pi =-pe-tu=} ni : \textit{u-mi? a-na} \textit{puni-ka=} \\
its.own-measure-to 1SG 3SG.POSS-go-NOM.OBJ see-TEMP:ASP
\end{tabular}
\end{exe}

As seen in the above example, the reflexive-possessive prefix leads to a conversion of the verb ‘to go’ into a nominal.

7 Conclusion

This paper has critically analyzed the syntax of Comanche, a Numic language on the brink of extinction, spoken by members of the Comanche tribe of Western Oklahoma. The basic word order of the language was examined first, with a general overview of irregular word order structures and the typology of Comanche’s syntax compared to that of SOV languages in general. Then, the formation of noun phrases was highlighted, with
a focus on the morphological processes involved. Examples of different kinds of noun phrases were provided as well. A discussion of verb phrases followed, with examples ranging from transitive verb phrases to question creation. Finally, switch reference markers and oblique relatives, two of Comanche’s numerous morphosyntactical phenomena, were briefly described. Overall, the syntax of Comanche augments the language’s already complex structure, especially due to its close relationship with morphology. Through this analysis, Comanche has been proven to be a unique language, worthy of more extensive linguistic analysis.

8 References

For more information, contact Samantha Price at price.sam@husky.neu.edu.
Appendix: Leipzig Abbreviations and IPA Conversions

9.1 Abbreviations

Leipzig Glossing is utilized for all examples in this paper; Table 3 displays abbreviations and their corresponding meanings.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>Absolutive</td>
</tr>
<tr>
<td>ASP</td>
<td>Aspect</td>
</tr>
<tr>
<td>BEN</td>
<td>Benefactive</td>
</tr>
<tr>
<td>CMPL</td>
<td>Completive</td>
</tr>
<tr>
<td>CNTR</td>
<td>Contrast</td>
</tr>
<tr>
<td>DISTR</td>
<td>Distributive</td>
</tr>
<tr>
<td>DU</td>
<td>Dual</td>
</tr>
<tr>
<td>EMPH</td>
<td>Emphatic</td>
</tr>
<tr>
<td>EXCL</td>
<td>Exclusive</td>
</tr>
<tr>
<td>GN</td>
<td>Generic</td>
</tr>
<tr>
<td>IMP</td>
<td>Imperative</td>
</tr>
<tr>
<td>INDF</td>
<td>Indefinite</td>
</tr>
<tr>
<td>INS</td>
<td>Instrumental</td>
</tr>
<tr>
<td>MTN</td>
<td>Motion</td>
</tr>
<tr>
<td>NOM</td>
<td>Nominalizing</td>
</tr>
<tr>
<td>OBJ</td>
<td>Object</td>
</tr>
<tr>
<td>PL</td>
<td>Plural</td>
</tr>
<tr>
<td>POSS</td>
<td>Possessive</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>PROG</td>
<td>Progressive</td>
</tr>
<tr>
<td>QUEST</td>
<td>Question Marker</td>
</tr>
<tr>
<td>RECP</td>
<td>Reciprocal</td>
</tr>
<tr>
<td>RPT</td>
<td>Repetitive</td>
</tr>
<tr>
<td>SBJ</td>
<td>Subject</td>
</tr>
<tr>
<td>SG</td>
<td>Singular</td>
</tr>
<tr>
<td>SWITCH</td>
<td>Switch reference marker</td>
</tr>
<tr>
<td>TOP</td>
<td>Topic</td>
</tr>
<tr>
<td>1</td>
<td>First Person</td>
</tr>
<tr>
<td>2</td>
<td>Second Person</td>
</tr>
<tr>
<td>3</td>
<td>Third Person</td>
</tr>
</tbody>
</table>

Table 3: Glossing abbreviations and corresponding meanings. (Adapted from Charney 1993)

9.2 IPA Conversion

Charney’s examples were converted to standard IPA when necessary for the purposes of this paper. These conversions can be seen in *Table 4 and Table 5*.
Table 4: Charney’s consonant symbols and their IPA equivalents.

<table>
<thead>
<tr>
<th>Charney (1993) Notation</th>
<th>IPA Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>β</td>
</tr>
<tr>
<td>hp</td>
<td>h p</td>
</tr>
<tr>
<td>hv</td>
<td>h β</td>
</tr>
<tr>
<td>mm</td>
<td>mː</td>
</tr>
<tr>
<td>hw</td>
<td>h w</td>
</tr>
<tr>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>R⁴</td>
<td>θ</td>
</tr>
<tr>
<td>ht</td>
<td>h t</td>
</tr>
<tr>
<td>hts</td>
<td>h ts</td>
</tr>
<tr>
<td>hr</td>
<td>h r</td>
</tr>
<tr>
<td>nn</td>
<td>nː</td>
</tr>
<tr>
<td>bk</td>
<td>h k</td>
</tr>
<tr>
<td>kw</td>
<td>kʷ</td>
</tr>
<tr>
<td>bkw</td>
<td>h kʷ</td>
</tr>
<tr>
<td>y</td>
<td>j</td>
</tr>
<tr>
<td>ή</td>
<td>ć</td>
</tr>
</tbody>
</table>
Table 5: Charney’s vowel symbols and their IPA equivalents.

<table>
<thead>
<tr>
<th>Charney (1993) Notation</th>
<th>IPA Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>aa</td>
<td>a:</td>
</tr>
<tr>
<td>ee</td>
<td>e:</td>
</tr>
<tr>
<td>i</td>
<td>i:</td>
</tr>
<tr>
<td>iː</td>
<td>iː</td>
</tr>
<tr>
<td>oo</td>
<td>o:</td>
</tr>
<tr>
<td>uu</td>
<td>u:</td>
</tr>
<tr>
<td>E</td>
<td>e</td>
</tr>
<tr>
<td>I</td>
<td>i</td>
</tr>
<tr>
<td>i</td>
<td>i</td>
</tr>
<tr>
<td>O</td>
<td>o</td>
</tr>
<tr>
<td>u</td>
<td>u</td>
</tr>
</tbody>
</table>

1 The information presented here is almost exclusively from Ethnologue 2017, unless otherwise stated.
2 For the purposes of mitigating inconsistencies between the Robinson-Armagost grammar (1990) and Charney’s (1993), Charney’s grammar is the dominant source except when specified.
3 Within the examples and projections, if an additional morpheme has a word-final dash (–) that is an indication of its attachment to the following morpheme; morpheme combinations were split to reflect inner complexities.
4 There was no way to determine the exact IPA symbol that corresponds to Charney’s [R]; [θ] was selected as the closest to Charney’s description of a “voiceless spirant” that is an allophone of /t/ (1993:37). Other possibilities range from [s] to [l].
5 Charney designates [a] as a central low (open) vowel, but its pronunciation indicates that the back low (open) vowel [ɑ] is a more appropriate symbol (Robinson and Armagost 1990:7).